Geographical Skills

Stage 4, 5, and 6 "HSC Exam Success"

Drew Collins - Head of Global Studies | Newcastle Grammar David Latimer - Head of HSIE | MLC

GTANSW Councillors

Syllabus;
H10 applies maps, graphs and statistics, photographs and fieldwork to analyse and integrate data in geographical contexts

What season?

What winds?

What about your weekend?

Never miss an

 opportunity

What type of photograph is this?
What do the colours represent?

Who might use these types of images in their vocation?

PART A : GRAPHS AND STATISTICS

PART A: GRAPHS AND STATISTICS

\rightarrow Calculating the rate of increase or decrease between two points
\rightarrow Calculating proportional or \% change
\rightarrow Estimating the value of proportional circles of different size using a key
\rightarrow Estimating the value of particular segments in pie graphs of different size
\rightarrow Identifying the three elements depicted in a ternary graph and the line scale of each
\rightarrow Stating the 'mix' of elements at any point on a ternary graph
\rightarrow Identifying clusters and patterns on a ternary graph
\rightarrow Constructing and interpreting proportional divided circles
\rightarrow Interpreting frequency distributions and diagrams
\rightarrow Reading and interpreting logarithmic and semilogarithmic graphs
\rightarrow Interpreting and analysing population pyramid data.
\rightarrow Climatic graphs

1. CALCULATING RATE OF CHANGE (INCREASE OR DECREASE)

You are calculating the speed at which change occurred
Rate of change $=\underline{\text { Change in one variable }}$ Charge in time (Hours, days, years)

Example: Population increased from 2mill to 3mill people from 2010 to 2015

$$
\begin{aligned}
\text { Rate of change } & =\frac{1,000,000 \text { people }}{5 \text { years }} \\
& =\text { rate of } 200,000 \text { per year }
\end{aligned}
$$

TRY THIS

A population increases from 500,000 to 1.5 million between 2012 and 2016. What was the rate of the population increase?
Change $1=$ \qquad
Change 2
$=$

A person travels 800 km . It takes them 4 hours.
What was the rate of change?
Change $1=$ \qquad
Change 2
$=$
A population changes from 1 million to 600,000 between 1980 and 2010 What was the rate of decrease in the population over that time?
Change $1=$ \qquad
Change 2
$=$

TRY THIS \quad A population increases from 500,000 to 1.5 million between 2012 and 2016. What was the rate of the population increase?
$\frac{\text { Change 1 }}{\text { Change 2 }}=\frac{1,000,000}{4}$

$$
=250,000 / \text { year }
$$

A person travels 800 km . It takes them 4 hours.
What was the rate of change?
$\frac{\text { Change 1 }}{\text { Change 2 }}=\frac{800}{4}$

$$
=200 \mathrm{~km} / \text { hour }
$$

A population changes from 1 million to 600,000 between 1980 and 201 What was the rate of decrease in the population over that time?
$\frac{\text { Change 1 }}{\text { Change 2 }}=\frac{400,000}{30}$

$$
=13,333 \text { per year }
$$

2. CALCULATING PROPORTIONAL OR \% CHANGE

You are calculating the proportion by which change has occurred.

Proportional or \% change $=\underset{\text { Starting figure }}{\frac{\text { Change }}{}} \quad$ X $\quad \underline{100}$
Example: The population increased from 2mill to 3mill people from 2010 to 2015.

$$
\begin{aligned}
\text { Proportional or } \% \text { change } & =\frac{1 \text { million }}{2 \text { million }} \times \underline{100} \\
& =50 \% \text { increase (half or } 50 \% \text { of the starting figure) }
\end{aligned}
$$

TRY THIS \quad A population increases from 500,000 to 1.5 million between 2012 and 2016.

Calculate the percentage change in population?
$\frac{\text { Change }}{\text { ing figure }}=\mathrm{X} \frac{100}{1}$
Starting figure $=$
This means
\qquad
\qquad

A population changes from 10.2 million to 50.5 million between 1990 and 2015.
Calculate the percentage change.

This means

A population increases from 500,000 to 1.5 million between 2012 and 2016.

Calculate the proportional change.

This means the population increased by twice the starting figure

A population changes from 10.2 million to 50.5 million between 1990 and 2015.
Calculate the percentage change.
$\frac{\text { Change }}{\text { Start }}=\frac{40.3}{10.2} \times \frac{100}{1}$
$=\underline{4030}$
10.2
$=395 \%$
This means the population increased by almost 4 times the original starting figure

3. TERNARY GRAPHS

Ternary / triangle graphs are used to illustrate 3 sets of data adding to 100\%.

Place 3 on the A scale is 10%

Place 3 on the b scale is 70%

Place 3 on the C scale is 20%

TRY THIS

Place 2
B scale

Place 1
A scale
B Scale
C Scale

Place 2
B scale 40%

Place 1

A scale 60\%
B Scale 20\%
C Scale 20\%

MY METHOD

- Using a ruler
- Read the horizontal lines across to the right - the direction the scale goes up (Services sector).
- Swap sides to ensure numbers add up ~100\%

NB: Its always the long line!

OBTUSE
 ANGLES

Graph A

Identify the MIX of workplace elements at the following places

A Primary	
	Secondary
Tertiary	
B	Primary
	Secondary
	Tertiary

Graph 6A

In which place might tourism be the principal economic activity?
Explain \qquad
Would Australia be closer to place D or A?
Explain
\qquad

Graph B:

Describe the features of a clay loam soil.

Soil type is a biophysical factor influencing economic activities. Name an economic activity in which soil type would be important. \qquad
Explain $\underline{\underline{\ldots . . .}}$

TRY THIS

Graph \mathbf{A}

Identify the MIX of workforce elements at the following places

```
A Primary 75%
    Secondary 0%
    Tertiary 25%
B Primary 60%
    Secondary 20%
    Tertiary 20%
```


Graph 6A

In which place might tourism be the principal economic activity? Place D
Explain Tourism is a service based industry and for some countries eg island nations, it contributes 100% of their GDP
Would Australia be closer to place D or A? Closer to D
Explain Australia has a large tertiary workforce and small \% in secondary and primary

Graph B:

Describe the features of a clay loam soil.
A clay loam soil has 30-40 \% clay, 20-50\% sand, 20-50\% silt
Soil type is a biophysical factor influencing economic activities. Name an economic activity in which soil type would be important dairy farming

Explain: Dairy cow need good pasture that retains moisture but does not become too waterlogged. Silt and clay retain moisture and sand provides good drainage

Where are you at?

THINK I'VE
GOT IT
READYTO
MOVE ON

GOT IT

ALL GOOD !

Infiltration Rate (in/hr)

Which would be the better soil for farming?OR

What percentage of people living in Buffalo in 2005 were Hispanic?
A $\quad 8 \%$
B $\times 13 \%$
C $\times 41 \%$
D $\times 51 \%$

4. SEMI-LOGARITHMIC GRAPHS

These graphs are used to show data which can have a large range of values.

To do this one (or both) scale is not arithmetic (linear) but increases in cycles. In these graphs the cycles increase by a value of 10 . Values within a cycle vary.

- Useful for studying data that changes exponentially
- Can display a much larger range of data.
- Useful for showing rate of change.

Rate of change
steepness of line

In these examples, each cycle is $\mathbf{1 0}$ times the first

Graph 4A

The fastest rate of change between 1998 and 2050 will be experienced by. and the slowest rate of population growth by

India's population is projected to overtake that of China. What does that tell us about the comparative rate of population change between the two countries?

Graph 4B

What was the population of the west African city in: 1963
2003
State the 10 -year period that experienced the greatest rate of change in population
Calculate the proportional change in population from 2003 to 2015

Graph 4C

Think-share
Think-pair-share

TRY THIS

Graph 4A the fastest rate of change between 1998 and 2050 will be experienced by Ethiopia (steepest slope) and the slowest rate of population growth by USA (flattest slope)

India's population is projected to overtake that of China. What does that tell us about the comparative rate of population change between the two countries?
India's population is growing at a faster rate if it is to overtake China.

Graph 4B

What was the population of the west African city in?
19631 million
200310 million
State the 10 -year period that experienced the greatest rate of change in population 1953-1963
Calculate the proportional change in population from 2003 to 2015
Change
$X 100=(16-10) 6 \times 100=$
60\%
Starting figure
10

Graph 4C

State the time and pressure when Well A and Well B experienced the same well pressure.
Time 20 minutes
Pressure $42.5 \mathrm{~kg} / \mathrm{cm}^{2}$

Over how many hours was the Well pressure monitored? 1 to $300=299$ minutes $=4.98 \mathrm{hrs}$ 60
At what time did the fastest rate of decrease begin in Well B? At 20 minutes Suggest why a semi log graph was used for this data
Changes in pressure are exaggerated over short period of time eg at Well B between 10 and 20
minutes. In an arithmetic graph that might change not be as noticeable

When you do a population or megacities study get students to plot some data on a semi logarithmic graph.

See template on the back page of your handout

COMPOSITE GRAPHS

These graphs are used to show data as part of a total.
Often catches students out because they just use the total at the top of the section
The same questions can be asked: absolute change, relative change

Where are you at?

THINK I'VE
GOT IT
READYTO
MOVE ON

GOT IT

ALL GOOD !

Geographical Skills

Stage 4, 5, and 6 "HSC Exam Success"

Drew Collins - Head of Global Studies | Newcastle Grammar David Latimer - Head of HSIE | MLC

GTANSW Councilors

Syllabus;
H10 applies maps, graphs and statistics, photographs and fieldwork to analyse and integrate data in geographical contexts

What season?

What winds?

What about your weekend?

Never miss an

 opportunity

What type of photograph is this?
What do the colours represent?

Who might use these types of images in their vocation?

PART B: MAPS \& PHOTOGRAPHS

PART B: MAPS

\rightarrow Locate features using degrees and minutes of latitude and longitude
\rightarrow Area and Grid references
\rightarrow Distinguish between large-scale and small-scale maps
\rightarrow Scale and direction
\rightarrow Calculate the area of a feature
\rightarrow Calculate the density of a feature
\rightarrow Measure bearings on a map
\rightarrow Calculate local relief
\rightarrow Determining sight lines between two points
\rightarrow Calculate the gradient of a slope as a ratio
\rightarrow Identify the aspect* of a slope
\rightarrow Construct a cross-section
\rightarrow Calculating the vertical exaggeration of a cross-section
\rightarrow Constructing a transect between two points and describing the changes along it
\rightarrow Describing patterns, relationships, networks, linkages and evidence of change within and between regions or areas
\rightarrow Construct a land-use map
\rightarrow Calculate Speed, Distance and Time
\rightarrow Recognising the key features of changing pressure patterns on synoptic charts
\rightarrow Reading, constructing and interpreting type of maps
\rightarrow Designing and interpreting flow charts
lich a photograph was taken
totographs and satellite images

interactions and change

an aerial photograph or satellite image (see part B) systems (GIS) to examine spatial / ecological issues.

restion or issue for study

ling geographical data from primary sources sing geographical data from secondary sources ch records the development of a fieldwork activity g the fieldwork activity.

1. SCALE - starting on page 12

Scale as a ratio: On a topographic map scale is shown as a ratio

TRY THIS	1: 100,000 means \qquad 1: 250,000 means \qquad 1:50,000 means Convert the following scales to ratios 1 cm represents 3,000 metres 1 centimetre represents 200 metres \qquad

TRY THIS $\quad 1: 100,000$ means 1 cm represents 1 km or 1000 m 1: 250,000 means 1 cm represents $2.5 \mathrm{~km} 052,500 \mathrm{~m}$ $1: 50,000$ means 1 cm represents $1 / 2 \mathrm{~km}$ or 500 m
Convert the following scales to ratios
1 cm represents 3,000 metres 1:300000
1 centimetre represents 200 metres 1:20000

Large scale vs small scale maps

For larger scale maps: e.g. 1:25 000
Larger
Smaller
Larger
Smaller

TRY THIS

a. Which of the maps above has the smallest scale, Collaroy OR Japan? Japan
b. Which of the following represents the largest scale?

1:100,000 OR $1 / 50,000$ OR 1 cm represents 25 km 1:50,000 (Largest number) Use piece of cake analogy
proie

SCALE and AREA

To calculate the area of a feature

1. Regular shape: Place a box around the feature, use the scale to measure the dimensions and calculate the area using Length X Breadth
2. Irregular shapes: Use the scale to determine the area of 1 grid square. Count how well the feature fills one or more grid squares
3. For larger irregular areas calculate the number of complete squares and the number of incomplete grid squares divided by two, $\underline{\mathbf{O R}}$
4. Estimate by counting the ones taking up more than half square, leave the rest
5. Make conversions to different units of measurements for area as needed $* 1 \mathrm{~km}^{2}=100 \mathrm{ha} \quad 1$ hectare $(\mathrm{ha})=10,000 \mathrm{~m}^{2}(100 \mathrm{~m} \times 100 \mathrm{~m})$

TRY THIS \quad Refer to the 2002 HSC Stimulus on Barrow Island Map p. 2
What is the scale of the map?
What does this mean in metres and km ?
What is the area of ONE grid square?
What is the approximate area of scattered forest in the SW quadrant of the map

What is the density of buildings in AR2894?

TRY THIS

Refer to the 2002 HSC Stimulus on Barrow Island Map p. 2
What is the scale of the map? 1:100 000
What does this mean in metres and km ?
1 cm represents 1000 metres or 1 km
What is the area of ONE grid square? $1 \mathrm{~km}^{2} 1 \mathrm{~km} \times 1 \mathrm{~km}$)
What is the approximate area of scattered forest in the SW quadrant of the map
$\sim 2 \mathrm{~km}^{2}$
What is the density of buildings in AR2894?
5

AREA and DENSITY

Density questions often follow area questions

Density is the number of a stated features in a set area e.g. houses per $\mathbf{1} \mathbf{k m}^{\mathbf{2}}$
'Usually' 1 grid square represents $1 \mathrm{~km}^{2}$. However, I have seen $2 \mathrm{~km} \times 2 \mathrm{~km}=4 \mathrm{~km}^{2}$
For example
ONE grid square on a $1: 100,000$ map is $1 \mathrm{~km}^{2}$.
The grid squares will be $1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~km} \times 1 \mathrm{~km}$

ONE grid square on a $1: 25,000$ map is also $1 \mathrm{~km}^{2}$
The grid squares will be $4 \mathrm{~cm} \times 4 \mathrm{~cm}=1 \mathrm{~km} \times 1 \mathrm{~km}$

TRY THIS	Refer to the 2003 HSC Stimulus Booklet Leeds map p. 2
	What is the scale of the map?
	What is the area of one grid square?
	What is the density of farms in AR 3444

TRY THIS	Refer to the 2003 HSC Stimulus Booklet Leeds map p.2
	What is the scale of the map? $1: 50,000$ What is the area of one grid square? $1 \mathrm{~km}^{2}$ What is the density of farms in AR 3444 2 per km^{2}

2. LOCAL RELIEF and SIGHT LINES

Local relief is the difference between the highest and lowest points along a transect.

TRY THIS \quad What is the local relief between X and Y? 150 metres
Can a person standing at A see place B ? No
Why would understanding local relief be important for:

- a farmer

Where can he view fields, crop \&
livestock decisions, flooding

- a town planner

Zoning landuse and infrastructure plans

TRY THIS	What is the local relief between X and Y?
	Why would understanding local relief be important for: - a farmer - a town planner - a tourist operator

3. GRADIENT

Gradient is the slope of the landform between two given points.
Gradient $(\mathrm{G})=$ Change in height (VR) divided by distance (HR)
$\mathrm{G}=\underline{\mathrm{VR} \text { (Vertical rise) }- \text { use contours }}$
HR (Horizontal run) - use map scale to calculate
The gradient of a slope that rises 200 m between two places 6.4 km apart $\mathrm{VR}=\underline{200 \mathrm{~m}}$ (RISE)
HR 6400m (RUN)

$$
=\frac{1}{32} \text { or } 1: 32
$$

This means that for or every 32 m travelled you go up/down 1 m

My HSC way

End in a ratio : so start as a ratio!

RISE : RUN
200m : 6400m
rise needs to be 1 :

200: 6400
200: 200

1:32

4. ASPECT

The direction a slope is facing.
Which way is straight downhill?

TRY THIS
Calculate the gradient of a slope that rises from 100 metres to 900 metres over a distance of 10 kilometres. $800: 10,000=1: 12.5$

What is the aspect of the slope in the diagram?
NW..(Wherre. is it.f.facing?).
Why is this useful knowledge?
Avalable sunlight for farming; views for housing

Where are you at?

THINK I'VE
GOT IT
READYTO
MOVE ON

GOT IT

ALL GOOD !

5. CROSS SECTION
 \&
 VERTICAL EXAGGERATION

Constructing a cross-section from a topographic map
When a cross section is constructed the scale on the vertical axis is selected to show up the shape of the land.

It is usually different to the scale on the horizontal axis which comes from the map.
This exaggerates the landforms in a vertical direction.

To calculate vertical exaggeration - TEXTBOOK VERSION

V.E. $=\underline{\text { V.S }}$ (the scale from the graph) H.S (the scale from the map)

Example:
V.S. $=1 \mathrm{~cm}$ represents 20 m
H.S. $=1 \mathrm{~cm}$ represents 100000 i.e. 1000 m
V.E. $=\frac{1 / 20}{1 / 1000}$
$=1000 / 20$
$=50$

There is a shortcut!

Shortcut version (WARNING = just show working)

V.E. $=\underline{\text { H.S (only using what } 1 \mathrm{~cm} \text { represents) }}$ V.S (only using what 1 cm represents)

Example:
H.S. $=1 \mathrm{~cm}$ represents 100,000 i.e. 1 kmm
V.S. $=1 \mathrm{~cm}$ represents 20 m

$$
\text { V.E. }=\underline{1000 \mathrm{~m}}
$$

$$
20 \mathrm{~m}
$$

$=50$ (times)
$7-10$ is an accurate representation

What would be the advantage of changing the vertical exaggeration of a cross section from 5 to 20 ?

TRY THIS \quad Calculate the vertical exaggeration for a cross section with a VS of 1 cm represents 250 metres and a HS scale of 1:200,000. Show working
$\frac{\mathrm{VS}}{\mathrm{HS}} \frac{1 / 250}{1 / 2000}=\frac{2000}{250}=8$
HS 1/2000 250
What would be the advantage of changing the vertical exaggeration of a cross section from 5 to 20 ?
To see the shape of the land more clearly and identify steep slopes

6. CALCULATING - SPEED, DISTANCE, and TIME

Distance $=$ Speed \times Time

Time= $\frac{\text { Distance }}{\text { Speed }}$

Where are you at?

THINK I'VE
GOT IT
READYTO
MOVE ON

GOT IT

ALL GOOD !

7. PHOTOGRAPHS

7a. Types of photographs

7b. ESTIMATING TIME OF DAY

- Shadows are the only information you need to observe.
- The sun always rises in the east and sets in the west... in both hemispheres
- Latitude can influence the accuracy of your answer

7c. ORIENTATING A PHOTO / DIRECTION PHOTO IS FACING

- Identify features in the photograph to your left, right and the main feature
- Find these places on the map and identify North direction.
- Imagine yourself on the map with features identified to your left and right and in front of you. You may need to turn the map around to orientate it to the photograph.

TRY THIS	Use the Barrow Island and photograph 1 on page 3
	a. Determine the direction the photographer was facing................
	b. Identify the map quadrant the photographer was located in............

7d. ESTIMATING SCALE OF A PHOTO FROM MAP

Checklist

\square Do the maps cover the same area?
aldentify two points that can be measured on BOTH maps.
eg

- On the map find two points that also appear on the photograph.
- Measure the distance and note the measurement on the map and the real-life distance.
- Now measure the distance between the same two points on the photograph in cm .
- This answer represents the real-life distance you measured using the map in km

Checklist

\square Do the maps cover the same area?
-ldentify two points that can be measured on BOTH maps.

- The two features must appear on both the map and aerial photograph.
- Use human features eg. road junctions, buildings. As these wont change like a sandbar or river might.
- A greater distance between the two features will produce a more accurate answer.
- Try and measure a distance on the photo that is a whole number

EXAMPLE - Map Scale is 1:50 000

1. Measure the direct distance between the same two points on the aerial photo e.g. 10 cm
2. Measure the direct distance between two points on the map eg. 6.5 cm
3. Ratio of Scales $=$ Ratio of Distances
$\frac{\text { Scale of Photo }}{\text { Scale of Map }} \longrightarrow=\frac{\text { Map Distance }}{\text { Photo Distance }}$

$\frac{\text { Scale of Photo }}{50000}$	$=\frac{6.5 \mathrm{~cm}}{10 \mathrm{~cm}}$	
Scale of Photo	$=$	$\frac{6.5 \times 50000}{10}$
	$=\frac{325000}{10}$	
	$=32500$	
Scale of Photo	$=1: 32500$	

The aerial photo has a LARGER SCALE than the map.

$\frac{\text { Photo scale }}{50,000}=\frac{1 \mathrm{~cm}}{2 \mathrm{~cm}}$

Photo scale $=1 \times 50,000$ 2

$1: 25,000$
a. Calculate the scale of the Vancouver photograph P 32007 HSC (Use the map and photo of Vancouver - separate printout) Map 1 cm rep 500 m Photo 1 cm rep 350 metres 1:35,000 b. Use the scale to calculate the area covered by the photograph. $9.5 \mathrm{~cm}(3,325 \mathrm{~m} / 3.325 \mathrm{~km}) \times 8 \mathrm{~cm}(2,800 \mathrm{~m} / 2.8 \mathrm{~km})$ Area $9.32 \mathrm{~km}^{2}$

Where are you at?

THINK I'VE
GOT IT
READYTO
MOVE ON

GOT IT

ALL GOOD !

8. GIS (Geographic Information Systems)

Statistical data shown by layers of info
 spatial data

Source F - A New England National Park Geographic Information System (GIS)

Source G-Vegetation/Types

Source H-Fact file
New England National Park is located between $30^{\circ} 22^{\prime} S$ and $30^{\circ} 44^{\prime}$ S and has unique biophysical features. Within its area it has the geographic boundaries of both tropical and cool temperate rainforest species. It also has one of the steepest gradients along the
east coast of Australia. Cool Temperate Rainforest (4) occurs in shetered valleys of the escarment. Antartic Beech is the dominant east coast of Australia. Cool Temperate Rainforest (14) occuurs in sheltetered valleys of the escarpment. Antarctic Beech is the dominant
species in (4) and today it is more commonly found in Tasmania. It is very sensitive to busfiries. Thus contemporary management
practices, such as fire hazard reduction, have resulted in it now invading the Eucalypt Woodland (2).

Exam examples of GIS

TRY THIS
 Use the printout from the 2003 HSC examination
 Refer to Source F and Source G.
 (a) State the relationship between relief and average annual temperature.

(b) A ridge runs from GR 443660 to GR 446660 . Identify a type of vegetation immediately north and immediately south of this ridge.
North
South
(c) Suggest ONE reason for the difference in vegetation types on either side of the ridge identified in part (b).

Refer to Sources F, G and H.

(d) Explain TWO geographic factors that contribute to the distribution of the Antarctic Beech ecosystem.
\qquad
\qquad
\qquad

Explain ONE benefit of GIS for environmental monitoring and management

- GTANSW FACEBOOK GROUP
- Resources
- Google Drive folder
- GTANSW WEBSITE : PPT PRESENTATIONS AND RESOURCES - SPECIAL EDITIONS - bulletin
- Contact Us

Geographical Skills GTANSW Annual Conference

Drew Collins

Head of Global Studies | Newcastle Grammar
E: drew.collins@ngs.nsw.edu.au
Twitter: @collinsgeogNGS
LinkedIn : drewcollins1

David Latimer

Head of HSIE | MLC

OUR GREATEST WEAKNESSLIESIN (4) |(5) THE MOST CERTAIN WAY TO Subereid

2002 HSC

 remember 15/25/60 marks| Question | Correct
 Response |
| :---: | :---: |
| $\mathbf{1}$ | C |
| 2 | C |
| 3 | B |
| 4 | D |
| 5 | A |
| 6 | D |
| 7 | C |
| 8 | D |

Question	Correct Response
9	D
10	B
11	A
12	B
13	B
14	A
15	A

2002 HSC

Question 16

Better responses:

- identified a specific challenge taken directly from the syllabus eg many of the better answers identified housing as the challenge and were able to provide strong responses
- described TWO responses related to the challenge named and were able to relate these responses to specific programs/projects operating in particular mega cities
- used specific examples and quoted detailed statistics with possible reference to the stimulus
- provided detailed descriptions with reference to specific examples
- used relevant terminology
- referred to a range of mega cities

Weaker responses:

- referred to generalised challenges
- provided too much detail about the challenge with insufficient emphasis on the responses to the challenge
- lacked detail and were very general
- failed to understand directive terms
- did not clearly differentiate between identifying and responding to the challenge
- described what could / should be done rather than actual responses
- failed to identify two responses to the challenge

2002 HSC

Question 17(a)

Question 17(c)

Better responses:

- incorporated case studies and used statistics to illustrate responses
- distinguished between health and social issues
- health issues were generally treated better than social issues

Weaker responses:

- confused social and health issues or simply listed a range of issues rather than describing them
- found it difficult to incorporate references to the future
- described general issues related to the developing world and not specifically to mega cities
- wrote emotive responses rather than factual ones
- railun iv iviail ivaluivs iv a irisza vity

2002 HSC

Question 18(b)

Better responses:

- referred to the ecosystem selected in part (a)
- indicated the main features of two impacts on the selected ecosystem
- made specific reference to geographic features affecting the ecosystem due to the impact
- answered the question concisely, using geographic terminology

Weaker responses:

- did not refer to the ecosystem identified in part (a)
- identified one impact only
- gave short responses such as pollution - without further features or information
- did not clearly relate the impact back to the ecosystem identified

2002 HSC

Question 19(a)

Better responses:

- demonstrated that candidates could read a pie graph accurately and draw information from this source
- provided two or more of the characteristics and features of the spatial pattern of global oil production
- provided some quantitative description to support their generalisations about the pattern of global oil production
- understood the concept of spatial pattern

Weaker responses:

- failed to read the pie graph correctly
- provided only one characteristic or feature of the spatial pattern of global oil production
- frequently failed to use quantitative information

2002 HSC

Question 19(b)

Better responses:

- clearly identified a global economic activity
- understood the difference between a global economic activity and an economic enterprise
- clearly identified two factors and explained how these influenced the future direction of the global economic activity identified

Weaker responses:

- failed to separate the factors currently affecting the economic activity and the factors that will impact on its future directions
- referred to an economic enterprise only
- identified only one factor
- did not identify a global economic activity

2002 HSC

Question 19(b)

Better responses:

- clearly identified a global economic activity
- understood the difference between a global economic activity and an economic enterprise
- clearly identified two factors and explained how these influenced the future direction of the global economic activity identified

Weaker responses:

- failed to separate the factors currently affecting the economic activity and the factors that will impact on its future directions
- referred to an economic enterprise only
- identified only one factor
- did not identify a global economic activity

2018 HSC

remember 20/40/40 marks

Question	Answer
1	D
2	D
3	C
4	A
5	C
6	B
7	B
8	C
9	C
10	A

11	C
12	B
13	B
14	C
15	A
16	A
17	D
18	A
19	A
20	D

2018 HSC remember 20/40/40 marks
 Question 21 (a)

Criteria	Marks
- Correctly completes the transect	2
- Completes some sections of the transect	1

Sample answer:

Cleared land - river - cleared land - open forest - cleared land - open forest

Question 21 (c)

Question 21 (b)

Criteria

- Correctly identifies the feature

Sample answer:

Vehicular track or track

Criteria	Marks
- Correctly identifies the season and provides a valid justification	2
- Provides some relevant information	1

Sample answer:

The satellite image is typical of summer because there is an obvious low pressure system over northern Australia.

Answers could include:

- Mid latitude high pressure cell over southern Australia, shown by absence of clouds, which in the winter would shift north
- High latitude cloud belt over Southern Ocean, which in the winter would shift north.

